Pre-telescopic observation (before 1609)
It is believed by some that the oldest cave paintings from up to 40,000 BP of bulls and geometric shapes,[220] or 20–30,000 year old tally sticks were used to observe the phases of the Moon, keeping time using the waxing and waning of the Moon's phases.[221] One of the earliest-discovered possible depictions of the Moon is a 3,000 BCE rock carving Orthostat 47 at Knowth, Ireland.[222][223] Lunar deities like Nanna/Sin featuring crescents are found since the 3rd millennium BCE.[224] Though the oldest found and identified astronomical depiction of the Moon is the Nebra sky disc from c. 1800–1600 BCE.[225][226]
The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former.[230][231]: 227 Elsewhere in the 5th century BC to 4th century BC, Babylonian astronomers had recorded the 18-year Saros cycle of lunar eclipses,[232] and Indian astronomers had described the Moon's monthly elongation.[233] The Chinese astronomer Shi Shen (fl. 4th century BC) gave instructions for predicting solar and lunar eclipses.[231]: 411
In Aristotle's (384–322 BC) description of the universe, the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of aether, an influential philosophy that would dominate for centuries.[234] Archimedes (287–212 BC) designed a planetarium that could calculate the motions of the Moon and other objects in the Solar System.[235] In the 2nd century BC, Seleucus of Seleucia correctly thought that tides were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the Sun.[236] In the same century, Aristarchus computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the radius of Earth for the distance.
The Chinese of the Han dynasty believed the Moon to be energy equated to qi and their 'radiating influence' theory recognized that the light of the Moon was merely a reflection of the Sun; Jing Fang (78–37 BC) noted the sphericity of the Moon.[231]: 413–414 Ptolemy (90–168 AD) greatly improved on the numbers of Aristarchus, calculating a mean distance of 59 times Earth's radius and a diameter of 0.292 Earth diameters, close to the correct values of about 60 and 0.273 respectively.[237] In the 2nd century AD, Lucian wrote the novel A True Story, in which the heroes travel to the Moon and meet its inhabitants. In 510 AD, the Indian astronomer Aryabhata mentioned in his Aryabhatiya that reflected sunlight is the cause of the shining of the Moon.[238][239] The astronomer and physicist Ibn al-Haytham (965–1039) found that sunlight was not reflected from the Moon like a mirror, but that light was emitted from every part of the Moon's sunlit surface in all directions.[240] Shen Kuo (1031–1095) of the Song dynasty created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent.[231]: 415–416 During the Middle Ages, before the invention of the telescope, the Moon was increasingly recognized as a sphere, though many believed that it was "perfectly smooth".[241]
Oleh JULO | 14 Agustus 2024
Banyak yang berpikir kalau bangun rumah impian itu butuh biaya besar. Tapi, tahukah kamu kalau dengan perencanaan yang tepat, kamu bisa bangun rumah sederhana cuma dengan modal Rp20 juta? Tentunya, proyek ini butuh perencanaan yang matang dan pemilihan material yang cermat! Yuk, simak panduan lengkapnya buat bantu kamu wujudkan rumah idaman dengan budget terbatas, plus tips buat tambah dana kalau ternyata budget kamu kurang.
Cultural representation
Since prehistoric times humans have depicted and later described their perception of the Moon and its importance for them and their cosmologies. It has been characterized and associated in many different ways, from having a spirit or being a deity, and an aspect thereof or an aspect in astrology.
For the representation of the Moon, especially its lunar phases, the crescent (🌙) has been a recurring symbol in a range of cultures since at least 3,000 BCE or possibly earlier with bull horns dating to the earliest cave paintings at 40,000 BP.[220][226] In writing systems such as Chinese the crescent has developed into the symbol 月, the word for Moon, and in ancient Egyptian it was the symbol 𓇹, meaning Moon and spelled like the ancient Egyptian lunar deity Iah,[334] which the other ancient Egyptian lunar deities Khonsu and Thoth were associated with.
Iconographically the crescent was used in Mesopotamia as the primary symbol of Nanna/Sîn,[224] the ancient Sumerian lunar deity,[335][224] who was the father of Inanna/Ishtar, the goddess of the planet Venus (symbolized as the eight pointed Star of Ishtar),[335][224] and Utu/Shamash, the god of the Sun (symbolized as a disc, optionally with eight rays),[335][224] all three often depicted next to each other. Nanna/Sîn is, like some other lunar deities, for example Iah and Khonsu of ancient Egypt, Mene/Selene of ancient Greece and Luna of ancient Rome, depicted as a horned deity, featuring crescent shaped headgears or crowns.[336][337]
The particular arrangement of the crescent with a star known as the star and crescent (☪️) goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and the planet Venus, in combination. It came to represent the selene goddess Artemis, and via the patronage of Hecate, which as triple deity under the epithet trimorphos/trivia included aspects of Artemis/Diana, came to be used as a symbol of Byzantium, with Virgin Mary (Queen of Heaven) later taking her place, becoming depicted in Marian veneration on a crescent and adorned with stars. Since then the heraldric use of the star and crescent proliferated, Byzantium's symbolism possibly influencing the development of the Ottoman flag, specifically the combination of the Turkish crescent with a star,[338] and becoming a popular symbol for Islam (as the hilal of the Islamic calendar) and for a range of nations.[339]
The features of the Moon, the contrasting brighter highlands and darker maria, have been seen by different cultures forming abstract shapes. Such shapes are among others the Man in the Moon (e.g. Coyolxāuhqui) or the Moon Rabbit (e.g. the Chinese Tu'er Ye or in Indigenous American mythologies the aspect of the Mayan Moon goddess, from which possibly Awilix is derived, or of Metztli/Tēcciztēcatl).[333]
Occasionally some lunar deities have been also depicted driving a chariot across the sky, such as the Hindu Chandra/Soma, the Greek Artemis, which is associated with Selene, or Luna, Selene's ancient Roman equivalent.
Color and material wise the Moon has been associated in Western alchemy with silver, while gold is associated with the Sun.[340]
Through a miracle, the so-called splitting of the Moon (Arabic: انشقاق القمر) in Islam, association with the Moon applies also to Muhammad.[341]
Desain yang Sederhana tapi Tetap Fungsional
Buat hemat biaya, pilih desain rumah yang sederhana tapi tetap fungsional. Hindari penggunaan ruang yang nggak perlu, dan fokuslah pada ruangan inti seperti kamar tidur, ruang tamu, dapur, dan kamar mandi.
Manfaatkan furnitur built-in atau rak dinding yang bisa bantu hemat ruang dan biaya.
Membangun rumah idaman dengan modal Rp20 juta mungkin terdengar mustahil, tapi dengan perencanaan yang matang, pemilihan material yang cermat, dan desain yang efisien, impian tersebut bisa terwujud. Memaksimalkan anggaran pada elemen-elemen penting seperti pondasi, dinding, dan atap, serta memilih tukang yang terjangkau tapi berpengalaman, adalah kunci sukses dalam proyek ini. Dengan fokus pada kebutuhan dasar dan memanfaatkan material ekonomis yang tetap berkualitas, kamu bisa memiliki hunian sederhana yang nyaman dan fungsional tanpa harus menguras kantong.
Baca Juga: Rincian Biaya Membangun Dapur Kecil untuk Rumah Kamu
Tarik Dana Sekarang, Bayarnya Belakangan!
Bunga ringan, tenor hingga 9 bulan, limitnya hingga Rp50 juta. Tunggu apa lagi? Yuk, lakukan tarik dana sekarang!
Cartographic resources
Jakarta, CNBC Indonesia - Merger tiga bank syariah BUMN yakni PT Bank BRISyariah Tbk (BRIS), PT Bank Syariah Mandiri (BSM) dan PT Bank BNI Syariah (BNI) membawa saham BRIS terus melesat.
BRIS akan menjadi bank hasil penggabungan (surviving entity) dalam merger tiga bank syariah BUMN ini.
Data perdagangan BEI mencatat, saham BRIS sudah naik dalam 1 bulan terakhir secara akumulatif sebesar 86%, 3 bulan terakhir melesat 184%, dan dalam 6 bulan terakhir saham BRIS meroket 591%.
Sejak awal tahun hingga perdagangan Rabu kemarin (21/10/2020), atau year to date, saham BRIS melesat 322,73% dengan kapitalisasi pasar Rp 13,55 triliun.
Meski demikian, pada perdagangan Rabu kemarin, saham BRIS akhirnya terkoreksi setelah berhari-hari terus mencetak kenaikan signifikan.
Saham BRIS ditutup minus 7% atau menyentuh batas bawah, auto reject bawah (ARB), minus 7% di level Rp 1.395/saham.
Nilai transaksi saham BRIS kemarin mencapai Rp 811,08 miliar dan volume perdagangan 557,15 juta saham.
BRIS tercatat di papan perdagangan BEI pada 9 Mei 2018 dengan harga penawaran umum saham perdana (initial public offering/IPO) Rp 510/saham.
Saat itu, dengan menawarkan 2,62 miliar saham baru atau 27% dari modal yang disetor penuh, maka BRIS mendapatkan dana segar sebesar Rp 1,33 triliun.
Dengan harga saham BRIS ke level Rp 1.395/saham, maka harga BRIS 175% melesat dari harga IPO-nya.
Mari kita ilustrasikan perhitungan keuntungan saham BRIS.
1. Misalnya, katakanlah si A, punya bujet Rp 10 juta. Dengan dana tersebut, dia berhasil membeli 196 lot (19.600 saham, 1 lot isi 100 saham) BRIS saat IPO di harga Rp 510/saham.
Kini, setelah 2 tahun lebih IPO berlalu, harga saham BRIS berada di level Rp 1.359/saham, atau nilai saham si A tersebut sudah naik menjadi Rp 27 juta, atau cuan Rp 17 juta.
2. Misalnya si B, punya dana Rp 10 juta. Dia berhasil membeli saham BRIS saat ambles di Mei lalu yang berada di level terendah Rp 189/saham, dengan jumlah saham mencapai 52.910 setara modal Rp 10 juta tadi.
Pada awal-awal Oktober lalu, harga saham BRIS mencetak level tertinggi di posisi Rp 1.500/saham atau nilainya menjadi Rp 79,37 juta atau jika si B tersebut tidak melepas porsi sahamnya, maka untung Rp 69,37 juta dari harga terendah Rp 189/saham.
Terkait dengan merger ini, PT Bank Mandiri Tbk (BMRI) akan menjadi pemegang saham mayoritas dari BRIS, sebagai bank hasil penggabungan (surviving entity) dengan kepemilikan sebesar 51%.
Komposisi pemegang saham pada lainnya adalah PT Bank Negara Indonesia Tbk. (BBNI) 25,0%, PT Bank Rakyat Indonesia Tbk (BBRI) 17,4%, DPLK BRI - Saham Syariah 2% dan publik 4,4%.
Bank yang akan bergabung dengan Bank BRISyariah dalam mega merger bank syariah BUMN yakni PT Bank Syariah Mandiri (BSM) dan PT Bank BNI Syariah.
Ketua Project Management Office Integrasi (PMO) dan Peningkatan Nilai Bank Syariah BUMN Hery Gunardi mengatakan total aset bank hasil penggabungan ini nantinya akan mencapai Rp 215,6 triliun dengan modal inti lebih dari Rp 20,4 triliun.
Dengan demikian bank hasil penggabungan akan masuk ke dalam TOP 10 bank terbesar di Indonesia dari sisi aset dan TOP 10 bank syariah terbesar di dunia dari sisi kapitalisasi pasar.
Bank hasil penggabungan akan tetap menjadi perusahaan terbuka dan tercatat di Bursa Efek Indonesia dengan ticker code (kode saham) BRIS.
"Integrasi ini lebih dari sekadar corporate action. Mengawal dan membesarkan bank syariah terbesar di negeri ini sesungguhnya adalah amanah yang besar," Hery dalam siaran persnya, Rabu (21/10/2200).
Kepala Riset Samuel Sekuritas Indonesia, Suria Dharma mengatakan, koreksi harga saham BRI sempat terjadi karena kenaikan harga yang terlalu cepat, sehingga koreksi ini merupakan hal yang wajar.
"Naiknya kecepetan. Kan turun cuma bisa 7% [ARB], naik bisa di atas 25% [ARA]," kata Suria, di Jakarta.
Suria menjelaskan, kemungkinan tidak akan terjadi tender offer (penawaran untuk membeli saham publik oleh pengendali baru) setelah terjadi merger tiga bank syariah BUMN ini.
Meskipun ada perubahan pemegang saham pengendali yang sama-saham BUMN, yakni dari PT Bank Rakyat Indonesia Tbk (BBRI) ke PT Bank Mandiri Tbk (BMRI).
Perubahan pemegang saham pengendali terjadi karena nilai aset yang disetorkan PT Bank Mandiri Tbk (BMRI), induk usaha BSM, nilainya lebih besar dari nilai aset BRIS.
Nilai aset BSM mencapai Rp 112,1 triliun, BNI Syariah Rp 49,97 triliun, dan BRIS Rp 51,8 triliun.
"Kayanya sih ngga ada tender offer. Pemerintah biasanya ada justifikasinya," jelas Suria.
Saksikan video di bawah ini:
Coordination and regulation
Increasing human activity at the Moon has raised the need for coordination to safeguard international and commercial lunar activity. Issues from cooperation to mere coordination, through for example the development of a shared Lunar time, have been raised.
In particular the establishment of an international or United Nations regulatory regime for lunar human activity has been called for by the Moon Treaty and suggested through an Implementation Agreement,[265][267] but remains contentious. Current lunar programs are multilateral, with the US-led Artemis program and the China-led International Lunar Research Station. For broader international cooperation and coordination the International Lunar Exploration Working Group (ILEWG), the Moon Village Association (MVA) and more generally the International Space Exploration Coordination Group (ISECG) has been established.
Since pre-historic times people have taken note of the Moon's phases and its waxing and waning cycle, and used it to keep record of time. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon.[221][321][322] The counting of the days between the Moon's phases gave eventually rise to generalized time periods of lunar cycles as months, and possibly of its phases as weeks.[323]
The words for the month in a range of different languages carry this relation between the period of the month and the Moon etymologically. The English month as well as moon, and its cognates in other Indo-European languages (e.g. the Latin mensis and Ancient Greek μείς (meis) or μήν (mēn), meaning "month")[324][325][326][327] stem from the Proto-Indo-European (PIE) root of moon, *méh1nōt, derived from the PIE verbal root *meh1-, "to measure", "indicat[ing] a functional conception of the Moon, i.e. marker of the month" (cf. the English words measure and menstrual).[328][329][330] To give another example from a different language family, the Chinese language uses the same word (月) for moon as well as for month, which furthermore can be found in the symbols for the word week (星期).
This lunar timekeeping gave rise to the historically dominant, but varied, lunisolar calendars. The 7th-century Islamic calendar is an example of a purely lunar calendar, where months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.[331]
Of particular significance has been the occasion of full moon, highlighted and celebrated in a range of calendars and cultures, an example being the Buddhist Vesak. The full moon around the southern or northern autumnal equinox is often called the harvest moon and is celebrated with festivities such as the Harvest Moon Festival of the Chinese lunar calendar, its second most important celebration after the Chinese lunisolar Lunar New Year.[332]
Furthermore, association of time with the Moon can also be found in religion, such as the ancient Egyptian temporal and lunar deity Khonsu.
Moon Treaty and explorational absence (1976–1990)
Following the last Soviet mission to the Moon of 1976, there was little further lunar exploration for fourteen years. Astronautics had shifted its focus towards the exploration of the inner (e.g. Venera program) and outer (e.g. Pioneer 10, 1972) Solar System planets, but also towards Earth orbit, developing and continuously operating, beside communication satellites, Earth observation satellites (e.g. Landsat program, 1972), space telescopes and particularly space stations (e.g. Salyut program, 1971).
Negotiation in 1979 of Moon treaty, and its subsequent ratification in 1984 was the only major activity regarding the Moon until 1990.
History of exploration and human presence
Milih Material yang Ekonomis tapi Tetap Berkualitas
Pemilihan material adalah salah satu faktor yang sangat mempengaruhi biaya bangun rumah. Dengan modal Rp20.000.0000, kamu harus pintar-pintar milih material yang nggak cuma murah, tapi juga tahan lama.
Buat hemat biaya, kamu bisa cari material bekas yang masih layak pakai, seperti kayu atau pintu bekas yang sering dijual di pasar loak atau toko material bekas.
Renewed exploration (1990–present)
In 1990 Hiten-Hagoromo,[254] the first dedicated lunar mission since 1976, reached the Moon. Sent by Japan, it became the first mission that was not a Soviet Union or U.S. mission to the Moon.
In 1994, the U.S. dedicated a mission to fly a spacecraft (Clementine) to the Moon again for the first time since 1973. This mission obtained the first near-global topographic map of the Moon, and the first global multispectral images of the lunar surface.[255] In 1998, this was followed by the Lunar Prospector mission, whose instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.[256]
The next years saw a row of first missions to the Moon by a new group of states actively exploring the Moon. Between 2004 and 2006 the first spacecraft by the European Space Agency (ESA) (SMART-1) reached the Moon, recording the first detailed survey of chemical elements on the lunar surface.[257] The Chinese Lunar Exploration Program reached the Moon for the first time with the orbiter Chang'e 1 (2007–2009),[258] obtaining a full image map of the Moon. India reached, orbited and impacted the Moon in 2008 for the first time with its Chandrayaan-1 and Moon Impact Probe, becoming the fifth and sixth state to do so, creating a high-resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil.[259]
The U.S. launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor on June 18, 2009. LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on October 9, 2009,[260] whereas LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery.
China continued its lunar program in 2010 with Chang'e 2, mapping the surface at a higher resolution over an eight-month period, and in 2013 with Chang'e 3, a lunar lander along with a lunar rover named Yutu (Chinese: 玉兔; lit. 'Jade Rabbit'). This was the first lunar rover mission since Lunokhod 2 in 1973 and the first lunar soft landing since Luna 24 in 1976, making China the third country to achieve this.
In 2014 the first privately funded probe, the Manfred Memorial Moon Mission, reached the Moon.
Another Chinese rover mission, Chang'e 4, achieved the first landing on the Moon's far side in early 2019.[261]
Also in 2019, India successfully sent its second probe, Chandrayaan-2 to the Moon.
In 2020, China carried out its first robotic sample return mission (Chang'e 5), bringing back 1,731 grams of lunar material to Earth.[262]
The U.S. developed plans for returning to the Moon beginning in 2004,[263] and with the signing of the U.S.-led Artemis Accords in 2020, the Artemis program aims to return the astronauts to the Moon in the 2020s.[264] The Accords have been joined by a growing number of countries. The introduction of the Artemis Accords has fueled a renewed discussion about the international framework and cooperation of lunar activity, building on the Moon Treaty and the ESA-led Moon Village concept.[265][266][267]
2023 and 2024 India and Japan became the fourth and fifth country to soft land a spacecraft on the Moon, following the Soviet Union and United States in the 1960s, and China in the 2010s.[268] Notably, Japan's spacecraft, the Smart Lander for Investigating Moon, survived 3 lunar nights.[269] The IM-1 lander became the first commercially built lander to land on the Moon in 2024.[270]
China launched the Chang'e 6 on May 3, 2024, which conducted another lunar sample return from the far side of the Moon.[271] It also carried a Chinese rover to conduct infrared spectroscopy of lunar surface.[272] Pakistan sent a lunar orbiter called ICUBE-Q along with Chang'e 6.[273]
Nova-C 2, iSpace Lander and Blue Ghost are all planned to launch to the Moon in 2024.
Beside the progressing Artemis program and supporting Commercial Lunar Payload Services, leading an international and commercial crewed opening up of the Moon and sending the first woman, person of color and non-US citizen to the Moon in the 2020s,[274] China is continuing its ambitious Chang'e program, having announced with Russia's struggling Luna-Glob program joint missions.[275][276] Both the Chinese and US lunar programs have the goal to establish in the 2030s a lunar base with their international partners, though the US and its partners will first establish an orbital Lunar Gateway station in the 2020s, from which Artemis missions will land the Human Landing System to set up temporary surface camps.
While the Apollo missions were explorational in nature, the Artemis program plans to establish a more permanent presence. To this end, NASA is partnering with industry leaders to establish key elements such as modern communication infrastructure. A 4G connectivity demonstration is to be launched aboard an Intuitive Machines Nova-C lander in 2024.[277] Another focus is on in situ resource utilization, which is a key part of the DARPA lunar programs. DARPA has requested that industry partners develop a 10–year lunar architecture plan to enable the beginning of a lunar economy.[278]
In 1959 the first extraterrestrial probes reached the Moon (Luna program), just a year into the space age, after the first ever orbital flight. Since then humans have sent a range of probes and people to the Moon. The first stay of people on the Moon was conducted in 1969, in a series of crewed exploration missions (the Apollo Program), the last having taken place in 1972.
Uninterrupted presence has been the case through the remains of impactors, landings and lunar orbiters. Some landings and orbiters have maintained a small lunar infrastructure, providing continuous observation and communication at the Moon.
Increasing human activity in cislunar space as well as on the Moon's surface, particularly missions at the far side of the Moon or the lunar north and south polar regions, are in need for a lunar infrastructure. For that purpose orbiters in orbits around the Moon or the Earth–Moon Lagrange points, have since 2006 been operated. With highly eccentric orbits providing continuous communication, as with the orbit of Queqiao and Queqiao-2 relay satellite or the planned first extraterrestrial space station, the Lunar Gateway.[279][280]
While the Moon has the lowest planetary protection target-categorization, its degradation as a pristine body and scientific place has been discussed.[282] If there is astronomy performed from the Moon, it will need to be free from any physical and radio pollution. While the Moon has no significant atmosphere, traffic and impacts on the Moon causes clouds of dust that can spread far and possibly contaminate the original state of the Moon and its special scientific content.[283] Scholar Alice Gorman asserts that, although the Moon is inhospitable, it is not dead, and that sustainable human activity would require treating the Moon's ecology as a co-participant.[284]
The so-called "Tardigrade affair" of the 2019 crashed Beresheet lander and its carrying of tardigrades has been discussed as an example for lacking measures and lacking international regulation for planetary protection.[285]
Space debris beyond Earth around the Moon has been considered as a future challenge with increasing numbers of missions to the Moon, particularly as a danger for such missions.[286][287] As such lunar waste management has been raised as an issue which future lunar missions, particularly on the surface, need to tackle.[288][289]
Human remains have been transported to the Moon, including by private companies such as Celestis and Elysium Space. Because the Moon has been sacred or significant to many cultures, the practice of space burials have attracted criticism from indigenous peoples leaders. For example, then–Navajo Nation president Albert Hale criticized NASA for sending the cremated ashes of scientist Eugene Shoemaker to the Moon in 1998.[290][291]
Beside the remains of human activity on the Moon, there have been some intended permanent installations like the Moon Museum art piece, Apollo 11 goodwill messages, six lunar plaques, the Fallen Astronaut memorial, and other artifacts.[281]
Longterm missions continuing to be active are some orbiters such as the 2009-launched Lunar Reconnaissance Orbiter surveilling the Moon for future missions, as well as some Landers such as the 2013-launched Chang'e 3 with its Lunar Ultraviolet Telescope still operational.[292] Five retroreflectors have been installed on the Moon since the 1970s and since used for accurate measurements of the physical librations through laser ranging to the Moon.
There are several missions by different agencies and companies planned to establish a longterm human presence on the Moon, with the Lunar Gateway as the currently most advanced project as part of the Artemis program.